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AUTOOSCILLATIONS IN DIELECTRIC SUSPENSIONS
WITH THE “NEGATIVE” VISCOSITY EFFECT
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We consider an active system, consisting of dielectric particles, under the action of
electric field. Rotation of particles in liquid is synchronized by the Couetta flow. To
observe oscillations, we put a plate on the liquid layer and attach it to a spring. A
situation is considered when the polarization time is small in comparison with the typical
mechanical relaxation time. In such case, the stationary point can be unstable and, due
to the “negative” viscosity effect, autooscillations of the plate could be observed, if the
strength of an external electric field is beyond some critical value. We derive the exact
range of parameters, when autooscillations of the plate are possible, and numerically
calculate the period. It is also shown that beyond this range the system becomes stable
and stressed, thus imitating the behaviour of the muscle cells.

Introduction. Active systems have attracted much interest recently. They
are responsible for the functioning of the cell, motility of different microorganisms
[1]. Different unusual properties of these systems are known, for example, the
muscle cells of oysters develop high tension keeping them closed by expenditure
of energy. Creation of different systems (gels and other), exhibiting the properties
of active systems, has been started in different labs recently [2]. Here we are
exploring the properties of an active system – a suspension of dielectric particles
in a liquid of low conductivity, in which external energy is supplied by an electric
field [3]. It should be pointed out that electrostatic rotary machines are used by
bacteria to sustain their motility [1].

The dielectric suspension is known to have some properties typical of the ac-
tive living systems – the possibility to sustain the stretched quiescent state, the
autooscillations, which are observed for insect muscles [4], and others. The phys-
ical system considered consists of a dielectric suspension with internal rotations,
which models, for example, the action of the molecular motors between two plates,
one of which is free to move and connected to the spring. This mimics the thin
filaments of the muscle cells, where titin and nebulin rulers serve as elastic springs
in the sarcomere [1]. We have shown that depending on the physical parameters,
the system exhibits different regimes of autooscillations. In some range of the pa-
rameters the stressed steady state sustained by the internal rotations is unstable
and autooscillations arise, imitating in such a way the behaviour of muscle cells.

The polarization relaxation equation is given by

dP
dt

= [Ω × P] − 1
τ
(P − χE), (1)

where Ω is the angular velocity of a rotating particle, τ is the Maxwell relaxation
time and χ = χ0 −χ∞, where χ0 and χ∞ denote susceptibilities of the suspension
polarization at low and high electric field frequencies, correspondingly. Neglecting
the inertia of a small rotating particle, the balance of viscous and electrical torques
gives

α(Ω − Ω0) = [P × E], (2)
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where Ω0 is the vorticity of a macroscopic flow and α is the rotational friction
coefficient of the particles per unit volume. Neglecting the inertia of the free
plate, the force balance on the plate along the x-axis reads

−η
S

h

dx

dt
− S

2
[P × E] · ez − kx = 0, (3)

where k is a spring constant, η is the viscosity of the liquid, S is the area of the
plate and h is the thickness of the liquid layer. The flow vorticity, Ω0, in the
Couetta flow assumption can be expressed as

Ω0 = − 1
2h

dx

dt
ez. (4)

From Ω = Ωez, E = Eey and P = Pxex + Pyey we get [P × E] = EPxez and
[Ω × P] = −ΩPyex + ΩPxey, thus by excluding Ω from (1, 2, 3, 4), we obtain a
set of equations




ηS

kh

dx

dt
= −SE

2k
Px − x

dPx

dt
=

1
2h

dx

dt
Py − E

α
PxPy − 1

τ
Px

dPy

dt
=

E

α
P 2

x − 1
τ
Py − 1

2h

dx

dt
Px +

χ

τ
E.

(5)

For a spontaneous rotation of particles to take place, the strength of the
external electric field must satisfy the condition E > Ec, where E2

c = −α/χτ
(of course χ < 0 is necessary). The characteristic relaxation time of the plate
is τp = ηS/kh. By substituting t = τpt in (5), the plate relaxation time τp is
introduced as a time scale. Similarly, by substituting x = 2xhτp/τ and Pi = χEPi,
we obtain the following dimensionless set of differential equations:




dx
dt

= −x + aePx

τ

τp

dPx

dt
=

dx
dt

Py + ePxPy − Px

τ

τp

dPy

dt
= −dx

dt
Px − eP2

x − Py + 1,

(6)

where the parameters e and a are expressed as follows: e = E2/E2
c and a = α/4η.

Autooscillations. Let us examine the case, when the Maxwell relaxation
time τ for a particle is much smaller than the typical plate relaxation time τp, i.e.,
τ/τp → 0. Thus, from (6) we obtain an algebraic set of equations




v = −x + aePx

vPy + ePxPy − Px = 0

vPx + eP2
x + Py = 1,

(7)

where v = dx/dt. By excluding v from (7), one can find that the components of
particle’s polarization vector satisfy P2

x + P2
y = Py.

Exclusion of Px and Py from (7) gives a force (x) and velocity (v) relationship
for the active system:

(v + x)3 + 2av(v + x)2 + a2(v + x)(1 − e + v2) − a3ev = 0. (8)
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Let us denote the left side of (8) with F (x, v). Independently of the values of e and
a, there always exists a trivial solution x = 0, v = 0 for the equation F (x, v) = 0.
The exact shape of the curve depends on the both parameters, and, in overall for
the given a, four cases are possible there. They are shown in Fig.1 in an ascending
order of e.

The number of cross-points of the implicit function (8) with the abscissa axis
is related to the number of roots of F (0, v) = 0. If e > 1/(a + 1), there are two
nontrivial roots v1,2 = ±a

√
e(a + 1) − 1/(a +1) and, therefore, three cross-points

of the abscissa axis, as shown in Fig.1(b,c,d). If e ≤ 1/(a + 1), there is only one
cross-point (Fig.1a).

Similarly, F (x, 0) = 0 also has two nontrivial roots x1,2 = ±a
√

e − 1, thus
the plot of (8) crosses the ordinate axis three times, when e > 1, as shown in
Fig.1(c,d). These cross-points are stationary points and appear due to a force
balance created by the spontaneous rotation of active particles. If e ≤ 1, there is
only one stationary point, see Fig.1(a,b).
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Fig. 1. Phase portraits of (8), where a = 1.3 and a) e = 0.4; b) e = 0.8; c) e = 1.2; d)
e = 2.0. The black curve is an implicit plot of (8) – it contains all real roots of equation
(8) and, therefore, shows all possible states of the system. Gray curves show real parts of
roots with one complex component. White points are stationary (where v = 0). Arrows
indicate the direction of motion. Dashed lines indicate jumps, where the velocity changes
momentarily. In cases b) and c) a cycle is formed.
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Fig. 2. Shape of oscillations x(t), where a = 1.3 and e = 0.8.

To determine the stability of stationary points, one should notice that the
positive slope of x(v) in Fig.1 corresponds to the negative friction coefficient of
the active system [5]. In case a), the only stationary point is stable. In case b),
it becomes unstable. In case c), it becomes stable again, but two new unstable
stationary points appear. In case d), all three stationary points become stable. It is
interesting to note that there are states, where the differential friction coefficient
in some range of the parameters explored below is negative. This causes the
autooscilations around the stressed states.

As discussed above, in cases b) and c), there are unstable stationary points.
In these cases at point C1 in Fig.1 the coordinate x and velocity v are positive,
but further the increase of x is not possible and a jump to C2 happens, where x
is the same, but the velocity of the oscillating plane is opposite. Similarly, a jump
from C3 to C4 happens and a closed cycle C1, C2, C3, C4 is formed up. The typical
shape of autooscillations is shown in Fig.2.

Now let us find all values of the parameters e and a, for which such periodic
behaviour can be observed. For the jump from C1 to C2 to happen, it is neces-
sary that the maximum of function x(v), i.e., point C1, lies in the first quadrant,
otherwise there will be a stable stationary point on the x-axis, which cannot be
crossed, see Fig.1d. Thus, we have to solve ∂F

(
x(v), v

)
/∂v = 0 together with

F
(
x(v), v

)
= 0 with restrictions x > 0 and v > 0. This leads to inequalities

1
a + 1

< e < 2
a + 1
a + 2

, (9)

where a > 0. This is summarized in Fig.3. One can see that the periodic behaviour
cannot be observed, if e is too small, i.e., e ≤ 1/(a + 1) - case a), or e is too big,
i.e., e ≥ 2(a + 1)/(a + 2) - case d). In other cases autooscillations can be observed
in Fig.1(b,c) where dashed lines indicate the jumps.

To define the period of autooscillations, we consider the symmetry of the
implicit function plot F (x, v) = 0 and that the jump from C1 to C2 happens
momentarily (of course, inequalities (9) must be satisfied for the jump to happen).
By perceiving v as a function of x in the segment C4C1, one can find the period
by integrating dx/v(x), i.e.,

T = 2

+xc∫
−xc

dx
v(x)

where xc is the ordinate of critical point C1. Period dependence on the parameters
is illustrated in Fig. 4.
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Fig. 3. Summary of all possible cases shown in Fig.1. The gray region indicates the
values of the parameters a and e, when autooscillations take place.

Dielectric suspension as an active system. It presumably makes sense
to look on the results considered here in a broader context of the natural active
systems, for example, such as muscles [6]. The dependence of the shortening
velocity of the muscle on the applied force f is well described by the Hill equation
[6]

v =
B(f0 − f)

A + f
(10)

This equation arises naturally in the frame of the sliding filament model. Let the
total number of the cross-bridges between actin and myosin filaments be n0, with
the number of active sites for the given load being n. Let the force produced by
each active site be f0. Then the force balance reads

nf0 − n0f − βnv = 0 (11)
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Fig. 4. Period dependence on a.
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where β is the friction coefficient per active site, and f being a load per site.
Assuming the dependence of the fraction of active sites on the load (r is the
fraction of active sites in the absence of the load)

n

n0
= r + (1 − r)

f

f0
,

the Hill equation is obtained, where the constants A, B are expressed as follows
A = rf0/(1 − r) and B = rf0/β(1 − r). According to the Hill equation, the
maximum shortening velocity vmax of the muscle cell at f = 0 is Bf0/A, but
the maximum force developed by the muscle under isometric conditions is f0.
The corresponding values for our active system, according to Eq. (8), are vmax =
a
√

e(a + 1) − 1/(a + 1) and f0 = a
√

e − 1. This allows one to consider a force-
velocity dependence given by the Hill equation for the present active system. It
reads

f =
Bf0 − Av

v + B

which, being rewritten in terms of the parameters of dielectric suspension, reads

f =
√

e − 1√
(a + 1)e − 1

a
√

(a + 1)e − 1 − v(a + 1)
1 + v/B

(12)

From the force-velocity dependence given by the solution of Eq. (8) it is possible
to define the constant B−1 by fit with function (12), which in dependence on the
parameter e is shown in Fig.5 (at a = 0.2) We see that it is negative and thus gives
the evidence that the behaviour of the present active system is more complicated,
as described by the Hill equation. Nevertheless, there is a way to generalize the
simple derivation of the Hill equation, which allows one to qualitatively explain
the peculiarities of the present system. Since the negative viscosity effect is typical
of it, it is natural to assume that the total friction force has two counterparts –
one negative due to active sites and other positive due to the overall friction. In
this case, equation (11) reads

nf0 − n0f + β0nv − βn0v = 0. (13)

Here β0 describes the negative friction of active sites. Assuming the same depen-
dence of the active site friction on the load as above, the force-velocity relationship
reads

f =
A(vmax − v)

B − v

where A = f0(β − β0r)/β0(1 − r); B = rf0/β0(1 − r) and vmax = rf0/(β −
β0r). Note that the negative value of the constant B−1 quite naturally can be
associated with the negative friction in a system, which, in our case, arises due
to the rotations of dielectric particles. Since the increasing of B−1 is related to
transition to a non-monotonous force-velocity dependence, as illustrated in Fig.1c,
when spontaneous oscillations of the quiescent state arise, it seems justified to
conclude that the spontaneous oscillations observed for muscles of some insects [1]
could be determined by the negative friction coefficient in the system of sliding
myosin-actin filaments. Models based on this property of the systems of molecular
motors, which predict the spontaneous oscillations of the muscle cells, have already
appeared [4].

Conclusions. We have illustrated here that the dielectric suspension in the
electric field behaves like an active system of the living world. The obtained results
can be applied for creating artificial active systems for microfluidics, and others.
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Fig. 5. Dependence of the Hill equation parameter on e.
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